试题
题目:
如图,已知:△ABC中,AB=AC=10,BC=16,点P、D分别在边BC、AC上,BP=12,∠APD=∠B,求CD的长.
答案
解:∵AB=AC,
∴∠B=∠C,
∵∠APC=∠APD+∠DPC=∠B+∠BAP,且∠APD=∠B,
∴∠BAP=∠DPC,
∴△ABP∽△PCD,
∴
AB
PC
=
BP
CD
,
∵BC=16,BP=12,
∴PC=16-12=4,
∵AB=10,BP=12,PC=4,
∴
10
4
=
12
CD
,
∴CD=4.8.
解:∵AB=AC,
∴∠B=∠C,
∵∠APC=∠APD+∠DPC=∠B+∠BAP,且∠APD=∠B,
∴∠BAP=∠DPC,
∴△ABP∽△PCD,
∴
AB
PC
=
BP
CD
,
∵BC=16,BP=12,
∴PC=16-12=4,
∵AB=10,BP=12,PC=4,
∴
10
4
=
12
CD
,
∴CD=4.8.
考点梳理
考点
分析
点评
相似三角形的判定与性质.
由AB=AC,可得∠B=∠C,又由∠APD=∠B.利用三角形外角的性质,可得∠BAP=∠APD,继而可证得△ABP∽△PCD,然后由相似三角形的对应边成比例,即可求得CD的长.
此题考查了相似三角形的判定与性质以及三角形外角的性质.此题难度适中,注意掌握数形结合思想的应用.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?