试题

题目:
青果学院如图,AB为⊙O的直径,弦AD、BC相交于点P,如果CD=6,AB=10,那么tan∠BPD=(  )



答案
D
青果学院解:连接BD,则∠ADB=90°;
∵∠CDA=∠ABC,∠C=∠DAB;
∴△CPD∽△APB;
PD
PB
=
CD
AB
=
3
5

在Rt△BPD中,设PD=3x,则BP=5x,BD=4x;
∴tan∠BPD=
BD
PD
=
4
3
.故选D.
考点梳理
圆周角定理;相似三角形的判定与性质.
根据圆周角定理的推论可得到∠CDP=∠ABP、∠BAP=∠DCP;所以△CDP∽△ABP;连接BD,在Rt△BDP中,相似三角形的相似比正好是∠BPD的余弦值,进而可求出∠BPD的正切值.
本题综合考查了圆周角定理、相似三角形的判定和性质、解直角三角形的应用等知识.
找相似题