试题
题目:
如图,在△ABC中,∠C=90°,点D在AB上,BC=BD,DE⊥AB交AC于点E,△ABC的周长为12,△ADE的周长为6,则BC的长为( )
A.3
B.4
C.5
D.6
答案
A
解:设BC=BD=x,AD=y,因为∠C=∠ADE=90°∠A=∠A,所以△ADE∽△ACB;两三角形的周长之比为1:2,所以AD:AC=1:2,则AC=2y;
根据三角形ABC的周长为12得:x+(x+y)+2y=12;即:2x+3y=12…①
根据勾股定理得:(2y)
2
+x
2
=(x+y)
2
,即:2x=3y…②
联合①②得:x=3,y=2;
故应选A.
考点梳理
考点
分析
点评
相似三角形的判定与性质.
设BC=BD=x,AD=y,△ABD和△ABC相似,根据三角形的性质相似三角形周长的比等于对应边的比进行解答.
本题考点三角形相似的性质和勾股定理的应用.首先根据△ADE和△ACB有两个角相等判定△ADE∽△ACB,然后根据三角形的性质相似三角形周长的比等于对应边长的比得出AC的长度,然后利用勾股定理结合周长的计算公式算出BC的值.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?