试题
题目:
如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:(1)△AED≌△AEF;(2)△ABE∽△ACD;(3)BE+DC=DE;(4)BE
2
+DC
2
=DE
2
.其中正确的是( )
A.(2)(4)
B.(1)(4)
C.(2)(3)
D.(1)(3)
答案
B
解:∵△ADC绕点A顺时针旋转90°得△AFB,
∴△ADC≌△AFB,∠FAD=90°,
∴AD=AF,
∵∠DAE=45°,
∴∠FAE=90°-∠DAE=45°,
∴∠DAE=∠FAE,
∵在△AED与△AEF中,
AF=AD
∠FAE=∠EAD
AE=AE
,
∴△AED≌△AEF(SAS),故①正确;
∵∠BAE与∠CAD的大小无法确定,
∴△ABE与△ACD是否相似无法确定,故②错误;
同理,DE与BE+DC的大小也无法确定,故③错误;
∵△AED≌△AEF,
∴ED=FE,∠ACB=∠ABF,
在Rt△ABC中,
∵∠ABC+∠ACB=90°,
∴∠ABC+∠ABF=90°即∠FBE=90°,
∴BE
2
+BF
2
=FE
2
,即BE
2
+DC
2
=DE
2
,故④正确.
故选B.
考点梳理
考点
分析
点评
相似三角形的判定与性质;全等三角形的判定与性质.
由△ADC绕点A顺时针旋转90°得△AFB,可知△ADC≌△AFB,∠FAD=90°,由∠DAE=45°可判断∠FAE=∠DAE,可证①△AED≌△AEF.由已知条件可证△BEF为直角三角形,则有④BE
2
+DC
2
=DE
2
是正确的.
本题考查的是相似三角形的判定与性质,涉及到全都三角形的判定与性质、图形旋转的性质等知识,难度适中.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?