试题
题目:
已知:如图,AD是Rt△ABC的角平分线,AD的垂直平分线EF交CB的延长线于点F,求证:FD
2
=FB·FC.
答案
证明:连接AF,
∵EF是AD的垂直平分线,
∴AF=DF,
∴∠FAE=∠FDE,
∵∠FAE=∠FAB+∠BAD,∠FDE=∠C+∠CAD,且∠BAD=∠CAD,
∴∠FAB=∠C,
∵∠AFB是公共角,
∴△AFB∽△CFA,
∴
AF
FC
=
FB
AF
,
∴FA
2
=FB·FC,
即FD
2
=FB·FC.
证明:连接AF,
∵EF是AD的垂直平分线,
∴AF=DF,
∴∠FAE=∠FDE,
∵∠FAE=∠FAB+∠BAD,∠FDE=∠C+∠CAD,且∠BAD=∠CAD,
∴∠FAB=∠C,
∵∠AFB是公共角,
∴△AFB∽△CFA,
∴
AF
FC
=
FB
AF
,
∴FA
2
=FB·FC,
即FD
2
=FB·FC.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质.
首先连接AF,可证得△AFC∽△BFA,然后由相似三角形的对应边成比例证得FA
2
=FB·FC,则可得FD
2
=FB·FC.
此题考查了相似三角形的判定与性质,线段垂直平分线的性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
证明题.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?