答案

(1)证明:过点E作EH∥DC交AD于H,
∵AD⊥BC,
∴AD⊥EH,
∴∠EHG=90°,
∵EF⊥AB,
∴∠AFG=90°,
∴∠AFG=∠EHG=90°,
∵∠AGF=∠EGH,
∴∠FAG=∠HEG,
∵∠ADB=∠EGG=90°,
∴△ABD∽△EGH,
∴
=
,
∵EH:BD=AE:AC=1:2,
∴AH=DH=
AD,EH=
CD,
设AD=4x,
∵tan∠C=
=
,
∴CD=3x,
∴AH=DH=2x,EH=
x,
∴GH:BD=EH:AD=3:8,
∴DG-AG=DH+GH-AG=AH-AG+GH=2GH=
BD;

(2)解:延长FE交BC延长线于K,
∵2GH=
BD,BD=8,
∴GH=3,
∵EH∥CD,
∴△GEH∽△GKD,
∴
=,
∵CD=3x,EH=
x,DH=2x,
∴GD=DH+GH=3+2x,DK=CD+CK=2x+10,
∴
=,
解得:x=4,
∴AG=AH-GH=2x-3=5,AD=4x=16,
∴AB=
=8
,
∵∠AFG-∠ADB=90°,
∴在Rt△ABD中,sin∠BAD=
=
,
在Rt△AFG中,FG=AG·sin∠FAG=5×
=
.

(1)证明:过点E作EH∥DC交AD于H,
∵AD⊥BC,
∴AD⊥EH,
∴∠EHG=90°,
∵EF⊥AB,
∴∠AFG=90°,
∴∠AFG=∠EHG=90°,
∵∠AGF=∠EGH,
∴∠FAG=∠HEG,
∵∠ADB=∠EGG=90°,
∴△ABD∽△EGH,
∴
=
,
∵EH:BD=AE:AC=1:2,
∴AH=DH=
AD,EH=
CD,
设AD=4x,
∵tan∠C=
=
,
∴CD=3x,
∴AH=DH=2x,EH=
x,
∴GH:BD=EH:AD=3:8,
∴DG-AG=DH+GH-AG=AH-AG+GH=2GH=
BD;

(2)解:延长FE交BC延长线于K,
∵2GH=
BD,BD=8,
∴GH=3,
∵EH∥CD,
∴△GEH∽△GKD,
∴
=,
∵CD=3x,EH=
x,DH=2x,
∴GD=DH+GH=3+2x,DK=CD+CK=2x+10,
∴
=,
解得:x=4,
∴AG=AH-GH=2x-3=5,AD=4x=16,
∴AB=
=8
,
∵∠AFG-∠ADB=90°,
∴在Rt△ABD中,sin∠BAD=
=
,
在Rt△AFG中,FG=AG·sin∠FAG=5×
=
.