试题
题目:
如图,在△ABC中,CD⊥AB,且CD
2
=AD·DB,AE平分∠CAB交CD于F,∠EAB=∠B,CN=BE.①CF=BN;②∠ACB=90°;③FN∥AB;④AD
2
=DF·DC.则下列结论正确的是( )
A.①②④
B.②③④
C.①②③④
D.①③
答案
C
解:①∵CD⊥AB,∴∠ADC=∠CDB=90°,
∵CD
2
=AD·DB,∴
CD
AD
=
DB
CD
,
∴△ADC∽△CDB,
∴∠ACD=∠B,
∴∠ACB=90°,故本选项正确;
②∵AE平分∠CAB
∴∠CAE=∠DAF,
∴△CAE∽△DAF,
∴∠AFD=∠AEC,
∴∠CFE=∠AEC,
∴CF=CE,
∵CN=BE,∴CE=BN,
∴CF=BN,故本选项正确;
③∵∠EAB=∠B,
∴EA=EB,
∵FA=FC=BN,∠FEN=∠AEB,
∴△EFN∽△EAB,
∴∠EFN=∠EAB,
∴FN∥AB,故本选项正确;
④易证△ADF∽△CDA,
∴AD
2
=DF·DC,故本选项正确;
故选C.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;平行线的判定;等腰三角形的性质.
根据已知条件可证△ADC∽△CDB,得出∠ACB=90°.根据等量关系及等腰三角形的性质得到CF=BN.根据同位角相等,证明FN∥AB.证明△ADF∽△CDA,根据相似三角形的性质得出AD
2
=DF·DC.
本题综合考查了相似三角形的判定和性质,平行线的判定,等腰三角形的性质等知识点.
压轴题.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?