试题
题目:
如图,C为线段BD上一点,BC=3,CD=2.△ABC、△ECD均为正三角形,AD交CE于F,则S
△ACF
:S
△DEF
的值为( )
A.4:3
B.9:5
C.9:4
D.3:2
答案
C
解:∵△ABC、△ECD均为正三角形,BC=3,CD=2,
∴∠ACB=∠EDC=60°,AC=BC=3,DE=CD=2,
∴AC∥ED,
∴△ACF∽△DEF,
∴S
△ACF
:S
△DEF
=(
AC
DE
)
2
=(
3
2
)
2
=
9
4
.
故选C.
考点梳理
考点
分析
点评
相似三角形的判定与性质;等边三角形的性质.
由△ABC、△ECD均为正三角形,可证得AC∥DE,即可证得△ACF∽△DEF,然后由相似三角形面积比等于相似比的平方,求得S
△ACF
:S
△DEF
的值.
此题考查了相似三角形的判定与性质以及等边三角形的性质.此题难度不大,注意掌握数形结合思想的应用.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?