试题
题目:
如图,在矩形ABCD中,AB=1,BC=2,将其折叠使AB落在对角线AC上,得到折痕AE,那么BE的长度为( )
A.
2
-1
2
B.
3
-1
2
C.
5
-1
2
D.
6
-1
2
答案
C
解:设BE的长为x,则BE=FE=x、CE=2-x
在Rt△ABC中,AC=
AB
2
+BC
2
=
5
∵∠C=∠C,∠AFE=∠ABE=90°
∴△CEF∽△CAB(两对对应角相等的两三角形相似)
∴
EF
AB
=
CE
AC
∴FE=x=
CE
AC
×AB=
2-x
5
×1,x=
5
-1
2
,
∴BE=x=
5
-1
2
,
故选:C.
考点梳理
考点
分析
点评
专题
一元二次方程的应用;勾股定理;相似三角形的判定与性质.
根据对称性可知:BE=FE,∠AFE=∠ABE=90°,又∠C=∠C,所以△CEF∽△CAB,根据相似的性质可得出:
EF
AB
=
CE
AC
,BE=EF=
CE
AC
×AB,在△ABC中,由勾股定理可求得AC的值,AB=1,CE=2-BE,将这些值代入该式求出BE的值.
本题主要考查一元二次方程的应用,关键在于找出等式列出方程求解,同时也用到勾股定理和相似三角形的性质.
几何图形问题;压轴题.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?