试题

题目:
青果学院直角梯形ABCD中,∠A=∠B=90°,AB=7,AD=2,BC=3,在AB上取一点P,使△APD与△BPC相似,求AP的长.
答案
解:可设PA的长为x,
当△APD∽△BCP时,则
AP
BC
=
AD
BP
,即
x
3
=
2
7-x
,解得x=1或x=6.
假设△APD∽△BPC,则
AD
BC
=
AP
BP
,即
2
3
=
x
7-x

解得x=
14
5

综上所述,AP的长度为1、6或
14
5

解:可设PA的长为x,
当△APD∽△BCP时,则
AP
BC
=
AD
BP
,即
x
3
=
2
7-x
,解得x=1或x=6.
假设△APD∽△BPC,则
AD
BC
=
AP
BP
,即
2
3
=
x
7-x

解得x=
14
5

综上所述,AP的长度为1、6或
14
5
考点梳理
相似三角形的判定与性质;直角梯形.
要使两个三角形相似,则可能是△APD∽△BPC,也可能是△APD∽△BCP,所以应分两种情况讨论,进而求解AP的值即可.
本题主要考查了相似三角形的判定及性质问题,能够利用其性质求解一些简单的计算问题.
找相似题