试题
题目:
如图,△ABC中,点DE分别是AB,AC的中点,则下列结论:
①BC=2DE;②△ADE∽△ABC;③
AD
AE
=
AB
AC
;④
AD
DB
=
DE
BC
其中正确的有( )
A.1个
B.2个
C.3个
D.4个
答案
C
解:∵△ABC中,点DE分别是AB,AC的中点,
∴BC=2DE,DE∥BC,
∴△ADE∽△ABC,
AD
AB
=
AE
AC
,
∴
AD
AE
=
AB
AC
,
AD
AB
=
DE
BC
,
∴
AB-AD
AD
=
BC-DE
DE
,
∴
BD
AD
=
BC-DE
DE
,
∴
AD
DB
=
DE
BC-DE
,
∴①②③正确,④错误;
故选C.
考点梳理
考点
分析
点评
相似三角形的判定与性质;三角形中位线定理.
根据三角形的中位线得出BC=2DE,DE∥BC,推出△ADE∽△ABC,
AD
AB
=
AE
AC
,求出
AD
AE
=
AB
AC
,
AB
AD
=
BC
DE
,求出
AD
DB
=
DE
BC-DE
,根据以上内容判断即可.
本题考查了三角形的中位线定理,相似三角形的性质和判定,平行线分线段成比例定理的应用,主要考查学生的推理能力.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?