试题

题目:
青果学院如图,平行四边形ABCD中,过B作直线交AC、AD于O,E交CD的延长线于F,
(1)若OE=2,BE=5,求
OA
OC
的值.
(2)求证:OB2=OE·OF.
答案
(1)解:∵OE=2,BE=5,
∴OB=BE-OE=3,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴△AOE∽△COB,
OA
OC
=
OE
OB
=
2
3


(2)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴△AOB∽△COF,
OA
OC
=
OB
OF

OA
OC
=
OE
OB

OB
OF
=
OE
OB

∴OB2=OE·OF.
(1)解:∵OE=2,BE=5,
∴OB=BE-OE=3,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴△AOE∽△COB,
OA
OC
=
OE
OB
=
2
3


(2)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴△AOB∽△COF,
OA
OC
=
OB
OF

OA
OC
=
OE
OB

OB
OF
=
OE
OB

∴OB2=OE·OF.
考点梳理
相似三角形的判定与性质;平行四边形的性质.
(1)由OE=2,BE=5,可求得OB=3,由四边形ABCD是平行四边形,易证得△AOE∽△COB,然后由相似三角形的对应边成比例,求得
OA
OC
的值.
(2)易证得∴△AOB∽△COF,可得
OA
OC
=
OB
OF
,又由
OA
OC
=
OE
OB
,即可证得OB2=OE·OF.
此题考查了相似三角形的判定与性质以及平行四边形的性质.此题难度适中,注意掌握数形结合思想的应用.
找相似题