试题
题目:
如图所示,四边形ABCD的对角线交于点O,∠BAC=∠CDB.求证:∠DAC=∠CBD.
答案
证明:∵∠AOB=∠DOC,∠BAC=∠CDB,
∴△AOB∽△DOC,
∴OA:OD=OB:OC,
∴OA:OB=OD:OC,
∵∠AOD=∠BOC,
∴△AOD∽△BOC,
∴∠DAC=∠CBD.
证明:∵∠AOB=∠DOC,∠BAC=∠CDB,
∴△AOB∽△DOC,
∴OA:OD=OB:OC,
∴OA:OB=OD:OC,
∵∠AOD=∠BOC,
∴△AOD∽△BOC,
∴∠DAC=∠CBD.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质.
由∠AOB=∠DOC,∠BAC=∠CDB,根据有两角对应相等的三角形相似,可判定△AOB∽△DOC,即可得OA:OB=OD:OC,又由∠AOD=∠BOC,根据两组对应边的比相等且夹角对应相等的两个三角形相似,即可判定△AOD∽△BOC,则可证得:∠DAC=∠CBD.
此题考查了相似三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.
证明题.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?