试题
题目:
如图,在梯形ABCD中,AB∥CD,EF∥AB,求证:EM=FN.
答案
证明:∵AB∥CD,EF∥AB,
∴AB∥EF∥CD,
∴
DE
DA
=
CF
CB
,△DEM∽△DAB,△CFN∽△CBA,
∴
EM
AB
=
DE
DA
,
FN
AB
=
CF
CB
,
∴
EM
AB
=
FN
AB
,
∴EM=FN.
证明:∵AB∥CD,EF∥AB,
∴AB∥EF∥CD,
∴
DE
DA
=
CF
CB
,△DEM∽△DAB,△CFN∽△CBA,
∴
EM
AB
=
DE
DA
,
FN
AB
=
CF
CB
,
∴
EM
AB
=
FN
AB
,
∴EM=FN.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质.
由AB∥CD,EF∥AB,可得
DE
DA
=
CF
CB
,△DEM∽△DAB,△CFN∽△CBA,然后由相似三角形的对应边成比例,可证得EM=FN.
此题考查了相似三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.
证明题.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?