试题
题目:
如图,已知:在边长为12的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上.若BF=3,则BE长为( )
A.1
B.2.5
C.2.25
D.1.5
答案
C
解:∵四边形ABCD是正方形,
∴∠B=∠C=90°,
在△BEF与△CFD中
∵∠BFE+∠CFD=∠CFD+∠CDF=90°,
∴∠BEF=∠CDF,
∴△BEF∽△CFD,
∴
BF
CD
=
BE
CF
,
∵BF=3,BC=12,
∴CF=BC-BF=12-3=9,
∴
3
12
=
BE
9
,
∴BE=2.25.
故选C.
考点梳理
考点
分析
点评
相似三角形的判定与性质;正方形的性质.
由在边长为12的正方形ABCD中,有一个小正方形EFGH,根据同角的余角相等,可得∠BEF=∠CDF,继而证得△BEF∽△CFD,然后由相似三角形的对应边成比例,求得BE长.
此题考查了相似三角形的判定与性质、正方形的性质以及直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?