试题
题目:
如图,在·ABCD中,点E在DC上,若EC:AB=2:3,EF=4,则BF的长为( )
A.5
B.6
C.8
D.10
答案
B
解:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠CAB=∠ACD,∠ABE=∠BEC,
∴△ABF∽△CEF,
∴AB:CE=BF:EF,
即3:2=BF:4,
解得BF=6.
故选B.
考点梳理
考点
分析
点评
相似三角形的判定与性质;平行四边形的性质.
先根据平行四边形的性质得出∠CAB=∠ACD,∠ABE=∠BEC,故可得出△ABF∽△CEF,再由相似三角形的对应边成比例即可得出结论.
本题考查的是相似三角形的判定与性质和平行四边形的性质,熟知相似三角形的判定定理是解答此题的关键.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?