试题
题目:
如图,△ABC内接于圆,AD是高,AE为圆的直径,AB=4,AC=3,AD=2,则直径AE的长为( )
A.5
B.6
C.7
D.8
答案
B
解:连接BE,
∵AE是直径
∴∠ABE=∠ADC=90°
∵∠E=∠C
∴△ABE∽△ADC
∴
AB
AD
=
AE
AC
∵AB=4,AC=3,AD=2,
∴
4
2
=
AE
3
解得:AE=6,
故选B.
考点梳理
考点
分析
点评
圆周角定理;相似三角形的判定与性质.
根据圆周角定理及相似三角形的判定可得到△ABE∽△ADC,根据相似三角形的边对应成比例,代入后即可求解.
本题利用了直径对的圆周角是直角,圆周角定理,相似三角形的判定和性质求解.属于基础题.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?