答案

证明:
(1)∵∠BAC=135°,∴∠B+∠C=45°,
∵AD=AE,∠DAE=90°,
∴∠B+∠BAD=45°,
∴∠BAD=∠C,又∠ADB=∠AEC=135°,
∴△ABD∽△CAE,
∴
=
,即AD·AE=BD·CE,即AD
2=BD·CE,
又DE
2=AD
2+AE
2=2AD
2,
∴DE
2=2BD·CE.
(2)由(1)得
=
=
,
=
=
=
.

证明:
(1)∵∠BAC=135°,∴∠B+∠C=45°,
∵AD=AE,∠DAE=90°,
∴∠B+∠BAD=45°,
∴∠BAD=∠C,又∠ADB=∠AEC=135°,
∴△ABD∽△CAE,
∴
=
,即AD·AE=BD·CE,即AD
2=BD·CE,
又DE
2=AD
2+AE
2=2AD
2,
∴DE
2=2BD·CE.
(2)由(1)得
=
=
,
=
=
=
.