试题
题目:
如图,已知△ABC中,AH是高,AT是角平分线,且TD⊥AB,TE⊥AC.
求证:(1)∠AHD=∠AHE;(2)
BH
BD
=
CH
CE
.
答案
证明:(1)∵∠ADT=∠AHT=∠AET=90°,
∴D,E,H在以AT为直径的圆上,
∴∠AHD=∠ATD,∠AHE=∠ATE,
又∵AT是角平分线,TD⊥AB,TE⊥AC,
∴∠ATD=∠ATE,
∴∠AHD=∠AHE.
(2)直角△AHB与直角△TDB有公共角,
∴△AHB∽△TDB,
∴
BH
BD
=
AH
TD
.
同理:△AHC∽△TEC,
∴
CH
CE
=
AH
TE
∵TD=TE,
∴
BH
BD
=
CH
CE
.
证明:(1)∵∠ADT=∠AHT=∠AET=90°,
∴D,E,H在以AT为直径的圆上,
∴∠AHD=∠ATD,∠AHE=∠ATE,
又∵AT是角平分线,TD⊥AB,TE⊥AC,
∴∠ATD=∠ATE,
∴∠AHD=∠AHE.
(2)直角△AHB与直角△TDB有公共角,
∴△AHB∽△TDB,
∴
BH
BD
=
AH
TD
.
同理:△AHC∽△TEC,
∴
CH
CE
=
AH
TE
∵TD=TE,
∴
BH
BD
=
CH
CE
.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质.
(1)先判断D,E,H在同一圆上,再用同弧所对的圆周角相等以及角平分线的性质定理证明∠AHD=∠AHE.
(2)用两角对应相等得到两对三角形相似,再用相似三角形的对应边的比相等进行证明.
本题考查的是相似三角形的判定与性质,(1)根据圆的内容得到点D,E,H在同一个圆上,再用圆周角的性质证明两个角相等.(2)用相似三角形的判定定理判定两对三角形相似,然后用相似三角形的性质,对应边的比相等以及角平分线的性质定理进行证明.
证明题.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?