试题
题目:
(2014·宝山区一模)已知D、E、F分别为等腰△ABC边BC、CA、AB上的点,如果AB=AC,BD=2,CD=3,CE=4,AE=
3
2
,∠FDE=∠B,那么AF的长为( )
A.5.5
B.4.5
C.4
D.3.5
答案
C
解:∵AB=AC,
∴∠B=∠C,
∵∠BFD=180°-∠B-∠FDB,∠EDC=180°-∠FDE-∠FDB,
又∵∠FDE=∠B,
∴∠BFD=∠EDC,
∴△DBF∽△DCE,
∴BD:CE=BF:CD,
∵BD=2,CD=3,CE=4,
∴2:4=BF:3,
∴BF=1.5,
∵AC=AE+CE=
3
2
+4=5.5,
∴AB=5.5,
∴AF=AB-BF=5.5-1.5=4,
故选C.
考点梳理
考点
分析
点评
相似三角形的判定与性质;等腰三角形的性质.
由AE和CE的长可求出AC的长,因为△ABC是等腰三角形,所以AB=AC,若要求AF 的长,可求出BF的长即可.而通过证明△DBF∽△DCE即可求出BF的长,问题得解.
本题考查了等腰三角形的性质、相似三角形的判定和性质以及三角形内角和定理,解题的关键是求AF的长,转化为求BF的长.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?