试题

题目:
青果学院(2002·连云港)如图,等边△ABC中,D为AB边中点,DE⊥AC于E,EF∥AB交BC于F点,则△EFC与△ABC的面积之比为(  )



答案
B
青果学院解:从B点作AC边上的高BG,交AC于G,
∵DE⊥AC于E
∴DE∥BG
又∵D为AB边中点
∴AE=GE
∵△ABC为等边三角形,且BG为高
∴AG=GC
∴4AE=AC,即CE=
3
4
AC
∵EF∥AB
∴△EFC∽△ABC
又∵CE=
3
4
AC
∴△EFC与△ABC的面积之比=(
3
4
AC)2:AC2=9:16.
故选B.
考点梳理
相似三角形的判定与性质.
作AC边上的高BG,垂足为G,在等边三角形中,利用三线合一定理,结合DE∥BD,可求出AE与AC的关系,从而得出CE与AC的关系,那么再利用相似三角形的面积比等于相似比的平方,即可求.
本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比.(2)相似三角形面积的比等于相似比的平方.(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.
找相似题