试题
题目:
(2004·龙岩)如图,AB是⊙O的直径,且AB=10,弦MN的长为8,若弦MN的两端在圆上滑动时,始终与AB相交,记点A、B到MN的距离分别为h
1
,h
2
,则|h
1
-h
2
|等于( )
A.5
B.6
C.7
D.8
答案
B
解:设AB、NM交于H,作OD⊥MN于D,连接OM.
∵AB是⊙O的直径,且AB=10,弦MN的长为8,
∴DN=DM=4,
∵MO=5,
∴OD=3.
∵BE⊥MN,AF⊥MN,OD⊥MN,
∴BE∥OD∥AF,
∴△AFH∽△ODH∽△BEH,
∴
AF
OD
=
AH
OH
=
5-OH
OH
即
AF
3
=
5-OH
OH
,
BE
OD
=
HB
OH
=
5+OH
OH
即
BE
3
=
5+OH
OH
,
∴
1
3
(AF-BE)=-2,
∴|h
1
-h
2
|=|AF-BE|=6.
故选B.
考点梳理
考点
分析
点评
专题
勾股定理;垂径定理;相似三角形的判定与性质.
设AB、NM交于H,做OD⊥MN于D,连接OM,利用垂径定理及勾股定理可求出OD,再推△AFH∽△ODH∽△BEH,然后就可利用OH表示BE、AN,从而可求出答案.
本题需仔细分析图形,利用垂径定理和相似三角形的性质即可解决问题.
综合题;压轴题.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?