试题
题目:
(2005·衢州)如图,在Rt△ABC中,∠ACB=Rt∠,CD⊥AB,D为垂足,且AD=3,AC=3
5
,则斜边AB的长为( )
A.3
6
B.15
C.9
5
D.3+3
5
答案
B
解:∵∠ACB=∠ADC=90°,∠A=∠A
∴△ADC∽△ACB
∴AD:AC=AC:AB
∵AD=3,AC=3
5
∴AB=15
故选B.
考点梳理
考点
分析
点评
相似三角形的判定与性质.
先确定△ADC与△ACB相似,再根据相似三角形对应边成比例求出AB的长.
此题考查学生对相似三角形的性质的理解及运用,其中由相似三角形的性质得出比例式是解题关键.注意:求相似比不仅要认准对应边,还需注意两个三角形的先后次序.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?