试题
题目:
(2010·鄂州)如图,已知AB是⊙O的直径,C是⊙O上的一点,连接AC,过点C作直线CD⊥AB交AB于点D.E是OB上的一点,直线CE与⊙O交于点F,连接AF交直线CD于点G,AC=2
2
,则AG·AF是( )
A.10
B.12
C.8
D.16
答案
C
解:连接BC,则∠B=∠F,
∵CD⊥AB,∴∠ACD+∠CAD=90°,
∵AB是直径,
∴∠ACB=90°,∠CAB+∠B=90°,
∴∠ACG=∠F.
又∵∠CAF=∠FAC,
∴△ACG∽△AFC,
∴AC:AF=AG:AC,
即AG·AF=AC
2
=(2
2
)
2
=8.
故选C.
考点梳理
考点
分析
点评
圆周角定理;相似三角形的判定与性质.
建立AC与AG、AF之间的关系是关键,连接BC,则∠B=∠F,∠ACB=90°,通过证明∠ACD=∠B得∠F=∠ACG,从而得△ACG∽△AFC,根据对应边成比例得关系式求解.
此题考查了相似三角形的判定和性质,如何建立已知和未知之间的关系是解题关键,难度偏上.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?