试题
题目:
(2010·贺州)如图,在平行四边形ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于点M、N.下面结论错误的是( )
A.△ABM≌△CDN
B.AM=
1
3
AC
C.DN=2NF
D.△AME∽△DNC
答案
D
解:∵四边形ABCD是平行四边形,
∴∠ABC=∠ADC,AB=CD,AD=BC,
∵E、F分别是边AD、BC的中点,
∴DE=BF,
∴四边形BFDE是平行四边形,
∴∠AMB=∠ANF=∠CND,∠EBF=∠EDF,
∴∠ABM=∠CDN,
在△ABM和△CDN中,
∠ABM=∠CDN
∠AMB=∠CND
AB=CD
,
∴△ABM≌△CDN(AAS);
故A正确;
∵AD∥BC,
∴△AME∽△CMB,
∴AE:BC=AM:CM=1:2,
∴AM=
1
3
AC;
故B正确;
∵AD∥BC,
∴△AND∽△CNF,
∴AD:CF=DN:NF=2,
∴DN=2NF;
故C正确;
∵AB∥CD,AD∥BC,
∴△AME∽△CMB∽△CNF∽△AND,△ABM∽△CND,
但△AME与△DNC不一定相似.
故D错误.
故选D.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;全等三角形的判定;平行四边形的性质.
由在平行四边形ABCD中,E、F分别是边AD、BC的中点,可证得四边形BFDE是平行四边形,继而可利用AAS判定△ABM≌△CDN;易证得△AME∽△CMB,△AND∽△CNF,然后由相似三角形的对应边成比例,证得AM=
1
3
AC,DN=2NF.
此题考查了相似三角形的判定与性质、全等三角形的判定与性质以及平行四边形的性质.此题难度适中,注意掌握数形结合思想的应用.
压轴题.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?