试题
题目:
(2011·齐齐哈尔)如图,A、B、C、D是⊙O上的四个点,AB=AC,AD交BC于点E,AE=3,ED=4,则AB的长为( )
A.3
B.2
3
C.
21
D.3
5
答案
C
解:∵AB=AC,
∴∠ACB=∠ABC=∠D,
∵∠BAD=∠BAD,
∴△ABD∽△AEB,
∴
AB
AE
=
AD
AB
,
∴AB
2
=3×7=21,
∴AB=
21
.
故选C.
考点梳理
考点
分析
点评
专题
圆周角定理;相似三角形的判定与性质.
根据圆周角定理可得∠ACB=∠ABC=∠D,再利用三角形相似△ABD∽△AEB,即可得出答案.
此题主要考查了圆周角定理以及相似三角形的判定与性质,根据题意得出△ABD∽△AEB是解决问题的关键.
压轴题.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?