试题
题目:
(2012·枣庄)如图,直角三角板ABC的斜边AB=12cm,∠A=30°,将三角板ABC绕C顺时针旋转90°至三角板A'B'C'的位置后,再沿CB方向向左平移,使点B'落在原三角板ABC的斜边AB上,则三角板A'B'C'平移的距离为( )
A.6cm
B.4cm
C.(6-
2
3
)cm
D.(
4
3
-6
)cm
答案
C
解:如图,过B′作B′D⊥AC,垂足为B′,
∵在Rt△ABC中,AB=12,∠A=30°,
∴BC=
1
2
AB=6,AC=AB·cos30°=6
3
,
由旋转的性质可知B′C=BC=6,
∴AB′=AC-B′C=6
3
-6,
在Rt△AB′D中,∵∠A=30°,
∴B′D=AB′·tan30°=(6
3
-6)×
3
3
=(6-2
3
)cm.
故选C.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;含30度角的直角三角形;勾股定理;平移的性质;旋转的性质.
如图,过B′作B′D⊥AC,垂足为B′,则三角板A'B'C'平移的距离为B′D的长,根据AB′=AC-B′C,∠A=30°,在Rt△AB′D中,解直角三角形求B′D即可.
本题考查了旋转的性质,30°直角三角形的性质,平移的问题.关键是找出表示平移长度的线段,把问题集中在小直角三角形中求解.
计算题;压轴题.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?