试题
题目:
(2013·德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP的垂线,与PB的延长线交于点Q,已知:⊙O半径为
5
2
,tan∠ABC=
3
4
,则CQ的最大值是( )
A.5
B.
15
4
C.
25
3
D.
20
3
答案
D
解:∵AB为⊙O的直径,
∴AB=5,∠ACB=90°,
∵tan∠ABC=
AC
BC
,
∴
AC
BC
=
3
4
,
∵CP⊥CQ,
∴∠PCQ=90°,
而∠A=∠P,
∴△ACB∽△PCQ,
∴
AC
PC
=
BC
CQ
,
∴CQ=
BC
AC
·PC=
4
3
PC,
当PC最大时,CQ最大,即PC为⊙O的直径时,CQ最大,此时CQ=
4
3
×5=
20
3
.
故选D.
考点梳理
考点
分析
点评
专题
圆周角定理;圆内接四边形的性质;相似三角形的判定与性质.
根据圆周角定理的推论由AB为⊙O的直径得到∠ACB=90°,再根据正切的定义得到tan∠ABC=
AC
BC
=
3
4
,然后根据圆周角定理得到∠A=∠P,则可证得△ACB∽△PCQ,利用相似比得CQ=
BN
AC
·PC=
4
3
PC,PC为直径时,PC最长,此时CQ最长,然后把PC=5代入计算即可.
本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了三角形相似的判定与性质.
计算题;压轴题.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?