试题

题目:
(2002·上海模拟)在梯形ABCD中,AD∥BC,AC与BD相交于点O,如果S△AOD=1,S△BOC=2,那么AD:BC=
1:
2
1:
2

答案
1:
2

青果学院解:∵AD∥BC,
∴△AOD∽△COB,
S△AOD
S△COB
=(
AD
BC
2
∵S△AOD=1,S△BOC=2,
∴AD:BC=1:
2

故答案为:1:
2
考点梳理
相似三角形的判定与性质.
由AD∥BC,即可求得△AOD∽△COB,又由相似三角形面积的比等于相似比的平方,即可得
S△AOD
S△COB
=(
AD
BC
2,由S△AOD=1,S△BOC=2,即可求得答案.
此题考查了相似三角形的判定与性质.此题难度不大,注意掌握相似三角形的面积比等于相似比的平方定理的应用,注意数形结合思想的应用.
找相似题