试题
题目:
如图,△ABC、△DCE、△FEG是全等的三个等腰三角形,底边BC、CE、EG在同一直线上,且
AB=
3
,BC=1,连接BF交AC、DC、DE分别为P、Q、R.
试证△BFG∽△FEG,并求出BF的长.
答案
解:据题意知BC=CE=EG=1,
BG=3,FG=AB=
3
,(3分)
在△BFG和△FEG中∴
FG
EG
=
BG
FG
=
3
,∠G为公共角(7分)
∴△BFG∽△FEG(8分)
∴FE=FG
∴BF=BG=3(10分).
解:据题意知BC=CE=EG=1,
BG=3,FG=AB=
3
,(3分)
在△BFG和△FEG中∴
FG
EG
=
BG
FG
=
3
,∠G为公共角(7分)
∴△BFG∽△FEG(8分)
∴FE=FG
∴BF=BG=3(10分).
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;等腰三角形的性质.
已知三个全等的等腰三角形,以及边长,所以可求得各线段的长,即可求得线段的比值,由公共角即可证得△BFG∽△FEG;利用相似三角形的性质即可求得BF的长.
此题考查了相似三角形的判定和性质:
①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;
②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;
③如果两个三角形的两个对应角相等,那么这两个三角形相似.
综合题.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?