答案
解;

(1)∵AB∥CE,
∴∠A=∠DCE,
又∵∠ADB=∠EDC,
∴△ABD∽△CED;
(2)①过点E作EH⊥BF于点H,
∵△ABC是等边三角形,△ABD∽△CED,AB=6,AD=2CD,
∴
=
=
,∠A=∠ACB=60°,
∴CE=3,
∵AB∥CE,
∴∠A=∠DCE=60°,
∴∠ECH=180°-∠ACB-∠DCE=180°-60°-60°=60°,
∴EH=CE·sin60°=3×
=
;
②在Rt△ECH中,
∵∠ECH=60°,CE=3,
∴CH=CE·cos60°=3×
=
,
∴BH=BC+CH=6+
=
,
∴BE=
=
=3
.
解;

(1)∵AB∥CE,
∴∠A=∠DCE,
又∵∠ADB=∠EDC,
∴△ABD∽△CED;
(2)①过点E作EH⊥BF于点H,
∵△ABC是等边三角形,△ABD∽△CED,AB=6,AD=2CD,
∴
=
=
,∠A=∠ACB=60°,
∴CE=3,
∵AB∥CE,
∴∠A=∠DCE=60°,
∴∠ECH=180°-∠ACB-∠DCE=180°-60°-60°=60°,
∴EH=CE·sin60°=3×
=
;
②在Rt△ECH中,
∵∠ECH=60°,CE=3,
∴CH=CE·cos60°=3×
=
,
∴BH=BC+CH=6+
=
,
∴BE=
=
=3
.