试题
题目:
如图,已知等边三角形△AEC,以AC为对角线做正方形ABCD(点B在△AEC内,点D在△AEC外).连接EB,过E作EF⊥AB,交AB的延长线为F.
(1)猜测直线BE和直线AC的位置关系,并证明你的猜想.
(2)证明:△BEF∽△ABC,并求出相似比.
答案
解:(1)猜测BE和直线AC垂直.
证明:∵△AEC是等边三角形,
∴AE=CE,
∵四边形ABCD是正方形,
∴AB=CB,
∵BE=BE,
∴△AEB≌△CEB(SSS).
∴∠AEB=∠CEB,
∵AE=CE,
∴BE⊥AC;
(2)∵△AEC是等边三角形,
∴∠EAC=∠AEC=60°,
∵BE⊥AC,
∴∠BEA=
1
2
∠AEC=30°,
∵四边形ABCD是正方形,
∴∠BAC=45°,
∴∠BAE=15°,
∴∠EBF=45°,
∵EF⊥BF,
∴∠F=90°,
∴∠EBF=∠BAC,∠F=∠ABC,
∴△BEF∽△ACB,
延长EB交AC于G,设AC为2a,则BG=a,EB=
3
a-a,
∴相似比是:
BE
AC
=
3
a-a
2a
=
(
3
-1)a
2a
=
3
-1
2
解:(1)猜测BE和直线AC垂直.
证明:∵△AEC是等边三角形,
∴AE=CE,
∵四边形ABCD是正方形,
∴AB=CB,
∵BE=BE,
∴△AEB≌△CEB(SSS).
∴∠AEB=∠CEB,
∵AE=CE,
∴BE⊥AC;
(2)∵△AEC是等边三角形,
∴∠EAC=∠AEC=60°,
∵BE⊥AC,
∴∠BEA=
1
2
∠AEC=30°,
∵四边形ABCD是正方形,
∴∠BAC=45°,
∴∠BAE=15°,
∴∠EBF=45°,
∵EF⊥BF,
∴∠F=90°,
∴∠EBF=∠BAC,∠F=∠ABC,
∴△BEF∽△ACB,
延长EB交AC于G,设AC为2a,则BG=a,EB=
3
a-a,
∴相似比是:
BE
AC
=
3
a-a
2a
=
(
3
-1)a
2a
=
3
-1
2
考点梳理
考点
分析
点评
相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质.
(1)由等边三角形△AEC与正方形ABCD,利用SSS,易证:△AEB≌△CEB,再根据等腰三角形的三线合一性质,即可证得:BE⊥AC;
(2)根据题意易得∠EBF的度数为45°,则易证△BEF∽△ABC,又由相似三角形的对应边成比例,则可求得相似比.
此题考查了相似三角形的判定与性质、正方形的性质以及等边三角形的性质等知识.题目图形较复杂,解题时要注意数形结合思想的应用.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?