试题
题目:
如图,已知矩形OABC,以点O为坐标原点建立平面直角坐标系,其中A(2,0),C(0,3),点P以每秒1个单位的速度从点C出发在射线CO上运动,连接BP,作BE⊥PB交x轴于点E,连接PE交AB于点F,设运动时间为t秒.
(1)当t=2时,求点E的坐标;
(2)若AB平分∠EBP时,求t的值;
(3)在运动的过程中,是否存在以P、O、E为顶点的三角形与△ABE相似.若存在,请求出点P的坐标;若不存在,请说明理由.
答案
解:(1)当t=2时,PC=2,
∵BC=2,
∴PC=BC,
∴∠PBC=45°,
∴∠BAE=90°,
∴∠AEB=45°,
∴AB=AE=3,
∴OE=5
,
∴点E的坐标是(5,0);
(2)当AB平分∠EBP时,
∠PBF=45°,
则∠CBP=∠CPB=45°,
∴CP=CB=2
,
∴t=2;
(3)存在,
∵∠ABE+∠ABP=90°,
∠PBC+∠ABP=90°,
∴∠ABE=∠PBC,
∵∠BAE=∠BCP=90°,
∴△BCP∽△BAE,
∴
BC
AB
=
PC
AE
,
∴
t
AE
=
2
3
,
∴
AE=
3
2
t
,
∵若△POE∽△PCB,
∴
BC
OE
=
PC
PO
,
∴
2
2+
3
2
t
=
t
3-t
,
∴t
1
=
-4+2
13
3
,
t
2
=
-4-2
13
3
(舍去),
∴P的坐标为(0,
13-2
13
3
).
解:(1)当t=2时,PC=2,
∵BC=2,
∴PC=BC,
∴∠PBC=45°,
∴∠BAE=90°,
∴∠AEB=45°,
∴AB=AE=3,
∴OE=5
,
∴点E的坐标是(5,0);
(2)当AB平分∠EBP时,
∠PBF=45°,
则∠CBP=∠CPB=45°,
∴CP=CB=2
,
∴t=2;
(3)存在,
∵∠ABE+∠ABP=90°,
∠PBC+∠ABP=90°,
∴∠ABE=∠PBC,
∵∠BAE=∠BCP=90°,
∴△BCP∽△BAE,
∴
BC
AB
=
PC
AE
,
∴
t
AE
=
2
3
,
∴
AE=
3
2
t
,
∵若△POE∽△PCB,
∴
BC
OE
=
PC
PO
,
∴
2
2+
3
2
t
=
t
3-t
,
∴t
1
=
-4+2
13
3
,
t
2
=
-4-2
13
3
(舍去),
∴P的坐标为(0,
13-2
13
3
).
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;三角形的面积;矩形的性质.
(1)本题需先求出AB=AE,再求出DE=5,即可求出点E的坐标.
(2)本题需先求出CP=CB=2,即可求出t的值.
(3)本题需先证出△BCP∽△BAE,求出AE=
3
2
t,再证出△POE∽△PCB,求出t的值,再求出OP的长,即可求出P的坐标.
本题主要考查了相似三角形的性质与判定,在解题时要根据已知条件再结合图形是解题的关键,这是一道好题.
压轴题.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?