答案
解:(1)∵点E是CD的中点,即EC=DE,
又∵EF=PE,
∴四边形PCFD为平行四边形;
(2)设AP=x,
∵在直角梯形ABCD中,AD∥BC,∠A=∠B=90°,
∴△APD∽△BCP.
∴x:4=1:(5-x).解得x
1=1,x
2=4;
答;当AP的长为1或4时,四边形PCFD是矩形;

(3)延长DA到G,使AG=AD、当点G、P、C共线时CP+PD最小,最小值为GC
GC=PD+PC,
∵∠A=∠B=90°,AD=1,AB=5,BC=4,
∴PD=
,PC=4
,
∴GC=
5.
∴四边形PCFD的周长的最小值为
10.
解:(1)∵点E是CD的中点,即EC=DE,
又∵EF=PE,
∴四边形PCFD为平行四边形;
(2)设AP=x,
∵在直角梯形ABCD中,AD∥BC,∠A=∠B=90°,
∴△APD∽△BCP.
∴x:4=1:(5-x).解得x
1=1,x
2=4;
答;当AP的长为1或4时,四边形PCFD是矩形;

(3)延长DA到G,使AG=AD、当点G、P、C共线时CP+PD最小,最小值为GC
GC=PD+PC,
∵∠A=∠B=90°,AD=1,AB=5,BC=4,
∴PD=
,PC=4
,
∴GC=
5.
∴四边形PCFD的周长的最小值为
10.