试题

题目:
青果学院如图,E、F、G、H分别在矩形ABCD上,EF⊥GH,若AB=2,BC=3,则EF与GH的比值是多少?
答案
青果学院解:过E作EK⊥CD交CD于K,过H作HI⊥BC交BC于I,
∴∠EKF=∠HIG=90°,HI∥AB,EK∥BC,
∵EF⊥GH,HI⊥EK,
∴∠HOM=∠MNE=90°.
又∵∠EMN=∠HMO,
∴∠MEN=∠MHO.
∴△EFK∽△HGI(AAS).
EF
HG
=
EK
HI

由题意知:EK=BC=3,HI=AB=2,
EF
HG
=
3
2

青果学院解:过E作EK⊥CD交CD于K,过H作HI⊥BC交BC于I,
∴∠EKF=∠HIG=90°,HI∥AB,EK∥BC,
∵EF⊥GH,HI⊥EK,
∴∠HOM=∠MNE=90°.
又∵∠EMN=∠HMO,
∴∠MEN=∠MHO.
∴△EFK∽△HGI(AAS).
EF
HG
=
EK
HI

由题意知:EK=BC=3,HI=AB=2,
EF
HG
=
3
2
考点梳理
相似三角形的判定与性质;矩形的性质.
若要求EF与GH的比值,可把EF和GH放置在不同的三角形中,过E作EK⊥CD交CD于K,过H作HI⊥BC交BC于I,得Rt△EFK和Rt△HGI再证明两三角形相似,可求的EF与GH的比值.
本题考查相似三角形的判断和性质,三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.有时还要通过作辅助线构造相似三角形.
找相似题