试题
题目:
如图,在△ABC的外接圆O中,D是弧BC的中点,AD交BC于点E,连接BD.连接DC,DC
2
=DE·DA是否成立?若成立,给出证明;若不成立,举例说明.
答案
解:成立.
连接DC,
∵∠DCB和∠DAB为同弧所对圆周角,
∴∠DCB=∠DAB.
∵∠BAD和∠CAD为等弧所对圆周角,
∴∠BAD=∠CAD.
∴∠DCE=∠DAC.
∵∠CDE=∠ADC,
∴△DEC∽△DCA.
∴
DC
DE
=
DA
DC
.
∴DC
2
=DE·DA.
解:成立.
连接DC,
∵∠DCB和∠DAB为同弧所对圆周角,
∴∠DCB=∠DAB.
∵∠BAD和∠CAD为等弧所对圆周角,
∴∠BAD=∠CAD.
∴∠DCE=∠DAC.
∵∠CDE=∠ADC,
∴△DEC∽△DCA.
∴
DC
DE
=
DA
DC
.
∴DC
2
=DE·DA.
考点梳理
考点
分析
点评
专题
圆周角定理;相似三角形的判定与性质.
欲证DC
2
=DE·DA,即
DC
DE
=
DA
DC
,只要证明△DEC∽△DCA即可.
此题主要考查了相似的判定及圆周角定理的综合运用.
证明题.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?