试题
题目:
如图,等腰三角形ABC中,若∠A=∠B=∠DPE,
(1)求证:△APD∽△BEP;
(2)若AP=1,PB=2,BE=
3
2
,试求出AD的长.
答案
证明:(1)∵∠DPB=∠A+∠ADP=∠DPE+∠EPB,(2分)
而∠A=∠DPE,
∴∠EPB=∠ADP;(1分)
又∠A=∠B,
∴△APD∽△BEP;
解:(2)∵△APD∽△BEP,
∴
AD
PB
=
AP
BE
,即
AD
2
=
1
3
2
.
∴
AD=
4
3
.
证明:(1)∵∠DPB=∠A+∠ADP=∠DPE+∠EPB,(2分)
而∠A=∠DPE,
∴∠EPB=∠ADP;(1分)
又∠A=∠B,
∴△APD∽△BEP;
解:(2)∵△APD∽△BEP,
∴
AD
PB
=
AP
BE
,即
AD
2
=
1
3
2
.
∴
AD=
4
3
.
考点梳理
考点
分析
点评
等腰三角形的性质;相似三角形的判定与性质.
(1)△APD和△BEP中,∠A=∠B,所以只需再证一对角相等即可.根据∠DPB是△ADP的外角可证∠EPB=∠ADP,问题得证.
(2)根据相似三角形性质计算.
此题考查了相似三角形的判定和性质,属基础题.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?