试题

题目:
青果学院如图,等腰三角形ABC中,若∠A=∠B=∠DPE,
(1)求证:△APD∽△BEP;
(2)若AP=1,PB=2,BE=
3
2
,试求出AD的长.
答案
证明:(1)∵∠DPB=∠A+∠ADP=∠DPE+∠EPB,(2分)
而∠A=∠DPE,
∴∠EPB=∠ADP;(1分)
又∠A=∠B,
∴△APD∽△BEP;

解:(2)∵△APD∽△BEP,
AD
PB
=
AP
BE
,即
AD
2
=
1
3
2

AD=
4
3

证明:(1)∵∠DPB=∠A+∠ADP=∠DPE+∠EPB,(2分)
而∠A=∠DPE,
∴∠EPB=∠ADP;(1分)
又∠A=∠B,
∴△APD∽△BEP;

解:(2)∵△APD∽△BEP,
AD
PB
=
AP
BE
,即
AD
2
=
1
3
2

AD=
4
3
考点梳理
等腰三角形的性质;相似三角形的判定与性质.
(1)△APD和△BEP中,∠A=∠B,所以只需再证一对角相等即可.根据∠DPB是△ADP的外角可证∠EPB=∠ADP,问题得证.
(2)根据相似三角形性质计算.
此题考查了相似三角形的判定和性质,属基础题.
找相似题