答案
证明:(1)∵△ABC是等边三角形,∠DAE=120°,
∴∠DAB+∠CAE=60°,
∵∠ABC是△ABD的外角,
∴∠DAB+∠D=∠ABC=60°,
∴∠CAE=∠D,
∵∠ABC=∠ACB=60°,
∴∠ABD=∠ACE=120°,
∴△ABD∽△ECA;
(2)∵△ABD∽△ECA,
∴
=
,即AB·AC=BD·CE,
∵AB=AC=BC,
∴BC
2=BD·CE.
证明:(1)∵△ABC是等边三角形,∠DAE=120°,
∴∠DAB+∠CAE=60°,
∵∠ABC是△ABD的外角,
∴∠DAB+∠D=∠ABC=60°,
∴∠CAE=∠D,
∵∠ABC=∠ACB=60°,
∴∠ABD=∠ACE=120°,
∴△ABD∽△ECA;
(2)∵△ABD∽△ECA,
∴
=
,即AB·AC=BD·CE,
∵AB=AC=BC,
∴BC
2=BD·CE.