试题
题目:
(2010·梧州)如图,在平行四边形ABCD中,E是对角线BD上的点,且EF∥AB,DE:EB=2:3,EF=4,则CD的长为
10
10
.
答案
10
解:∵EF∥AB,
∴△DFE∽△DAB
∴EF:AB=DE:DB;
∵DE:EB=2:3,即DE:DB=2:5,
∴EF:AB=2:5;
∵EF=4,
∴AB=10;
又∵四边形ABCD是平行四边形,
∴CD=AB=10.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;平行四边形的性质.
由EF∥AB,易得△DFE∽△DAB,根据相似三角形得出的成比例线段,可求出AB的长;由于平行四边形的对边相等,则AB=CD,由此得解.
此题主要考查的是平行四边形的性质及相似三角形的判定和性质.
压轴题.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?