试题
题目:
(2012·南京)如图,在·ABCD中,AD=10cm,CD=6cm,E为AD上一点,且BE=BC,CE=CD,则DE=
3.6
3.6
cm.
答案
3.6
解:∵四边形ABCD是平行四边形,AD=10cm,CD=6cm,
∴BC=AD=10cm,AD∥BC,
∴∠2=∠3,
∵BE=BC,CE=CD,
∴BE=BC=10cm,CE=CD=6cm,∠1=∠2,∠3=∠D,
∴∠1=∠2=∠3=∠D,
∴△BCE∽△CDE,
∴
BC
CD
=
CE
DE
,即
10
6
=
6
DE
,
解得DE=3.6cm.
故答案为:3.6.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;平行四边形的性质.
先根据平行四边形的性质得出∠2=∠3,再根据BE=BC,CE=CD,∠1=∠2,∠3=∠D,进而得出∠1=∠2=∠3=∠D,故可得出△BCE∽△CDE,再根据相似三角形的对应边成比例即可得出结论.
本题考查的是相似三角形的判定与性质及平行四边形的性质,根据题意得出△BCE∽△CDE是解答此题的关键.
压轴题.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?