试题

题目:
青果学院(2012·天水)如图,等边△ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,若∠APD=60°,则CD的长为
2
3
2
3

答案
2
3

解:∵△ABC是等边三角形,
∴AB=BC=AC=3,∠B=∠C=60°,
∴∠BAP+∠APB=180°-60°=120°,
∵∠APD=60°,
∴∠APB+∠DPC=180°-60°=120°,
∴∠BAP=∠DPC,
即∠B=∠C,∠BAP=∠DPC,
∴△BAP∽△CPD,
AB
CP
=
BP
CD

∵AB=BC=3,CP=BC-BP=3-1=2,BP=1,
3
3-1
=
1
CD

解得:CD=
2
3

故答案为:
2
3
考点梳理
相似三角形的判定与性质;等边三角形的性质.
根据等边三角形性质求出AB=BC=AC=3,∠B=∠C=60°,推出∠BAP=∠DPC,证△BAP∽△CPD,得出
AB
CP
=
BP
CD
,代入求出即可.
本题考查了相似三角形的性质和判定,等边三角形的性质,三角形的内角和定理的应用,关键是推出△BAP∽△CPD,主要考查了学生的推理能力和计算能力.
计算题.
找相似题