试题
题目:
(2013·威海)如图,AC⊥CD,垂足为点C,BD⊥CD,垂足为点D,AB与CD交于点O.若AC=1,BD=2,CD=4,则AB=
5
5
.
答案
5
解:过点B作BE∥CD,交AC的延长线于点E,
∵AC⊥CD,BD⊥CD,
∴AC∥BD,∠D=90°,
∴四边形BDCE是平行四边形,
∴平行四边形BDCE是矩形,
∴CE=BD=2,BE=CD=4,∠E=90°,
∴AE=AC+CE=1+2=3,
∴在Rt△ABE中,AB=
A
E
2
+B
E
2
=5.
故答案为:5.
考点梳理
考点
分析
点评
相似三角形的判定与性质;勾股定理.
首先过点B作BE∥CD,交AC的延长线于点E,易证得四边形BDCE是矩形,然后由勾股定理求得答案.
此题考查了矩形的判定与性质以及勾股定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?