试题

题目:
青果学院(2013·昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t<16),连接EF,当△BEF是直角三角形时,t(s)的值为
4
4
.(填出一个正确的即可)
答案
4

解:∵AB是⊙O的直径,
∴∠C=90°,
而∠ABC=60°,BC=4cm,
∴AB=2BC=8cm,
∵F是弦BC的中点,
∴当EF∥AC时,△BEF是直角三角形,
此时E为AB的中点,即AE=AO=4cm,
∴t=
4
1
=4.
故答案为:4.
考点梳理
圆周角定理;垂径定理;相似三角形的判定与性质.
根据圆周角定理得到∠C=90°,由于∠ABC=60°,BC=4cm,根据含30度的直角三角形三边的关系得到AB=2BC=8cm,而F是弦BC的中点,所以当EF∥AC时,△BEF是直角三角形,此时E为AB的中点,易得t=4s;当从A点出发运动到B点名,再运动到O点时,此时t=12s;也可以过F点作AB的垂线,点E点运动到垂足时,△BEF是直角三角形.
本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了圆周角定理的推论以及含30度的直角三角形三边的关系.
压轴题;开放型.
找相似题