试题
题目:
如图,过△ABC的重心O点(三条中线的交点),作BC的平行线,交AB于D,交AC于E,则△ADE与△ABC的面积比是( )
A.1:2
B.2:3
C.1:3
D.4:9
答案
D
解:如图,过F作FH∥CG交AB于H,
∵F为BC中点,
∴BH=HG=
1
2
BG=
1
2
AG,
∵OG∥FH,
∴AO:AF=AG:AH=AG:(AG+HG)=1:(1+
1
2
)=2:3,
又∵DE∥BC,
∴△ADE∽△ABC,AO:AF=AE:AC,
∴S
△ADE
:S
△ABC
=AE
2
:AC
2
=AO
2
:AF
2
=4:9.
故选D.
考点梳理
考点
分析
点评
相似三角形的判定与性质;平行线分线段成比例.
如图,过F作FH∥CG交AB于H,根据平行线分线段成比例定理,由F为BC中点,得到BH=HG=
1
2
BG=
1
2
AG,又因为OG∥FH,则AO:AF=AG:AH=AG:(AG+HG)=1:(1+
1
2
)=2:3,再根据DE∥BC,得到△ADE∽△ABC,AO:AF=AE:AC,然后根据相似三角形面积的比等于相似比的平方即可得到△ADE与△ABC的面积比.
本题考查了相似三角形的判定与性质以及平行线分线段成比例定理.也考查了相似三角形面积的比等于相似比的平方.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
在△ABC中,∠BAC=90°,AB=AC,分别过点B、C作经过点A的直线l的垂线BD、CE,若BD=3cm,CE=4cm,求DE的长.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,四边形EFGH是△ABC内接正方形,BC=21cm,高AD=15cm,则内接正方形EFGH的边长是多少?