数学
在图中,每个小正方形的网格边长都为1,请在下面两幅图中分别画两个形状不同,面积都为20的
菱形,要求菱形的顶点均在格点上.
某家具市场现有大批如图所示的边角余料(单位:cm),采荷中学数学兴趣小组决定将其加工成等腰三角形,且满足以下两个要求:(1)三角形中至少有一边长为10cm;(2)三角形中至少有一边上的高为8cm.请给出三种不同的方案,标上相关线段的长度,并求出相应等腰三角形的面积(不需尺规作图).
如果正方形网格中的每一个小正方形边长都是1,则每个小格的顶点叫做格点.
(1)在图a中以格点为顶点画一个三角形,使三角形的三边长分别为3、
5
、2
2
;
(2)在图b中以格点为顶点画一个面积为10的正方形;
(3)观察图c中带阴影的图形,请你将它适当剪开,重新拼成一个正方形;(要求:在图c中用虚线作出,并用文字说明剪拼方法)图c说明:
沿虚线剪开,然后①、②、③分别对应拼接
沿虚线剪开,然后①、②、③分别对应拼接
.
(4)观察正方体,沿着一些棱将它剪开,展开成平面图形.若正方体的表面积为12,请你在图d中以格点为顶点画出一个正方体的平面展开图.(只需画出一种情形)
【阅读理解】:若一条直线l把一个图形分成面积相等的两个图形,则称这样的直线l叫做这个图形的等积直线.如图①,直线l经过三角形ABC的顶点A和边BC的中点N,易知直线l将△ABC分成两个面积相等的图形,则称直线l为△ABC的等积直线.
根据上述内容解决以下问题:
(1)如图②,在矩形ABCD中,直线l经过AD、BC边的中点M、N,请你判断直线l是否为该矩形的等积直线.
是
是
(填“是”或“否”)并在图②中再画出一条该矩形的等积直线;(不必写作法,保留作图痕迹)
(2)如图③,在梯形ABCD中,直线l经过AD、BC边的中点M、N,请你判断直线l是否为该梯形的等积直线.
是
是
;(填“是”或“否”)
(3)在图③中,过MN的中点O任做一条直线PQ分别交AD,BC于点P,Q(如图④),猜想PQ是否为该梯形的等积直线,若“是”请证明,若“不是”请说明理由;
【探索应用】:
李大爷家有一块五边形的土地如图⑤,已知∠A、∠B、∠C都是直角,AB∥CD,BC∥AE,现决定画一条线把五边形土地分为两
块,其中一块地用来改种核桃树,要求两块地面积相同,请你帮李大爷画出这条线,并判断这样的直线有多少条(保留作图痕迹,不必说明理由).
如图,要在一块形状为直角三角形(∠C为直角)的铁皮上裁出一个半圆形的铁皮,需先在这块铁
皮上画出一个半圆,使它的圆心在线段AC上,且与AB、BC都相切.
①请你用直尺圆规画出来(要求用直尺和圆规作用,保留作图痕迹,不要求写作法).
②若AC=BC=4,求半圆的半径.
如图所示,五边形ABCDE是张大爷十年前承包的一块土地的示意图.经过多年开垦荒地,现已变成如图所示的形状,但承包土地与开垦荒地的分界小路(即图中折线CDE)还保留着,张大爷想过E点修一条直路,直路修好后,要保持直路左边的土地面积与承包时的一样多,右边的土地面积与开垦的荒地面积一样多.请你用有关的几何知识,按张大爷的要求设计出修路方案.(不计分界小路与直路的占地面积)
(1)写出设计方案,并在图中画出相应的图形;
(2)说明方案设计理由.
如图:△ABC中,AB=AC,AD⊥BC于D,且AD=BC=4,若将此三角形沿AD将开成为两个三角形,在平面上把这两个三角形拼成一个四边形,请你画出所有不同形状的四边形的示意图(标出图中的直角)
如图,AC、AB是两条笔直的交叉公路,M、N是两个实习点,现欲建一个茶水供应站,使得此茶水供应站到公路两边的距离相等,且离M、N两个实习点的距离也相等,此茶水站应建在何处?
如图1,给你一张三角形纸片,其中AB=AC,∠A=36°,将此纸片按图2中的线剪开,可以将原三角形分成三个等腰三角形,那么
(1)仿照图2,再设计两种不同的分割方法,将原三角形纸片分为3个三角形,使得每个三角形都为等腰三角形.
(2)仿照图2,再设计一种不同的分割方法,将原三角形纸片分为4个三角形,使得每个三角形都为等腰三角形.
(要求:在图中标出分得的每个等腰三角形的三个内角的度数)
利用尺规作图找出下图残破的圆的圆心,请保留作图痕迹.
第一页
上一页
38
39
40
41
42
下一页
最后一页
184428
184429
184431
184432
184434
184435
184437
184439
184440
184442