数学
(2006·上海)已知点P在线段AB上,点O在线段AB延长线上.以点O为圆心,OP为半径作圆,点C是圆O上的一点.
(1)如图,如果AP=2PB,PB=BO.求证:△CAO∽△BCO;
(2)如果AP=m(m是常数,且m>1),BP=1,OP是OA,OB的比例中项.当点C在圆O上运动时,求AC:BC的值(结果用含m的式子表示);
(3)在(2)的条件下,讨论以BC为半径的圆B和以CA为半径的圆C的位置关系,并写出相应m的取值范围.
(2006·三明)如图①、②在·ABCD中,∠BAD、∠ABC的平分线AF、BG分别与线段CD两侧的延长线(或线段CD)相交于点F、G,AF与BG相交于点E.
(1)在图①中,求证:AF⊥BG,DF=CG;
(2)在图②中,仍有(1)中的AF⊥BG、DF=CG.若AB=10,AD=6,BG=4,求FG和AF的长.
(2006·钦州)如图,在△ABC中,∠C=90°,在AB边上取一点D,使BD=BC,过D作DE⊥AB交AC于E,AC=8,BC=6.求DE的长.
(2006·内江)如图:四边形ABCD中,E、F、G、H分别为各边的中点,顺次连接E、F、G、H,把四边形EFGH称为中点四边形.连接AC、BD,容易证明:中点四边形EFGH一定是平行四边形.
(1)如果改变原四边形ABCD的形状,那么中点四边形的形状也随之改变,通过探索可以发现:当四边形ABCD的对角线满足AC=BD时,四边形EFGH为菱形.
当四边形ABCD的对角线满足
AC⊥BD
AC⊥BD
时,四边形EFGH为矩形;
当四边形ABCD的对角线满足
AC⊥BD且AC=BD
AC⊥BD且AC=BD
时,四边形EFGH为正方形;
(2)探索三角形AEH、三角形CFG与四边形ABCD的面积之间的等量关系,请写出你发现的结
论,并加以证明;
(3)如果四边形ABCD的面积为2,那么中点四边形EFGH的面积是多少?
(2006·丽水)如图1,我们将相同的两块含30°角的直角三角板Rt△DEF与Rt△ABC叠合,使DE在AB上,DE过点C,已知AC=DE=6.
(1)将图1中的△DEF绕点D逆时针旋转(DF与AB不重合),使边DF、DE分别交AC、BC于点P、Q,如图2.
①求证:△CQD∽△APD;
②连接PQ,设AP=x,求面积S
△PCQ
关于x的函数关系式;
(2)将图1中的△DEF向左平移(点A、D不重合),使边FD、FE分别交AC、BC于点M、N设AM=t,如图3.
①判断△BEN是什么三角形?并用含t的代数式表示边BE和BN;
②连接MN,求面积S
△MCN
关于t的函数关系式;
(3)在旋转△DEF的过程中,试探求AC上是否存在点P,使得S
△PCQ
等于平移所得S
△MCN
的最大值?说明你的理由.
(2006·莱芜)如图,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=x,CE=y.
(1)如果∠BAC=30°,∠DAE=105°,试确定y与x之间的函数关系式;
(2)如果∠BAC=α,∠DAE=β,当α,β满足怎样的关系时,(1)中y与x之间的函数关系式还成立?试说明理由.
(2006·吉林)如图,在Rt△ABC和Rt△DEF中,∠ABC=90°,AB=4,BC=6,∠DEF=90°,DE=EF=4.
(1)移动△DEF,使边DE与AB重合(如图1),再将△DEF沿AB所在直线向左平移,使点F落在AC上(如图2),求BE的长;
(2)将图2中的△DEF绕点A顺时针旋转,使点F落在BC上,连接AF(如图3).请找出图中的全等三角形,并说明它们全等的理由.(不再添加辅助线,不再标注其它字母)
(2006·哈尔滨)已知:如图,圆O
1
与圆O
2
外切于点P,经过圆O
1
上一点A作圆O
1
的切线交圆O
2
于B、C两点,直
线AP交圆O
2
于点D,连接DC、PC.
(1)求证:DC
2
=DP·DA;
(2)若圆O
1
与圆O
2
的半径之比为1:2,连接BD,BD=4
6
,PD=12,求AB的长.
(2006·贵港)如图所示,AB是⊙O的直径,AD是弦,∠DBC=∠A.
(1)求证:BC与⊙O的位置关系是
相切
相切
;
(2)若OC是BD的垂直平分线,垂足为E,BD=6,CE=4,求AD的长为
9
2
9
2
.
(2006·广安)已知:如图,AB是⊙O的直径,⊙O过AC的中点D,DE切⊙O于点D,交BC于点E.
(1)求证:DE⊥BC;
(2)如果CD=4,CE=3,求⊙O的半径.
第一页
上一页
263
264
265
266
267
下一页
最后一页
173382
173383
173384
173385
173386
173387
173388
173389
173390
173391