题目:
(2006·三明)如图①、②在·ABCD中,∠BAD、∠ABC的平分线AF、BG分别与线段CD两侧的延长线(或线段CD)相交于点F、G,AF与BG相交于点E.
(1)在图①中,求证:AF⊥BG,DF=CG;
(2)在图②中,仍有(1)中的AF⊥BG、DF=CG.若AB=10,AD=6,BG=4,求FG和AF的长.
答案

(1)证明:如图①,在平行四边形ABCD中,∠BAD+∠ABC=180°
∵AF、BG分别平分∠BAD和∠ABC,
∴∠1=∠2,∠3=∠4,
∴∠1+∠3=
(∠BAD+∠ABC)=
×180°=90°,
∴在△AEB中,∠AEB=90°,知AF⊥BG.
又有平行四边形ABCD中,AB∥CD,即AB∥FG,
可得∠1=∠F,而∠1=∠2,
∴∠2=∠F,
∴在△DAF中,DF=AD(4分)
同理可得,在△CBG中,CG=BC,
∵平行四边形ABCD中,AD=BC,
∴DF=CG;
(2)解:如图②,平行四边形ABCD中,CD=AB=10,BC=AD=6,
由(1)和题意知,DF=AD=6,CF=CD-DF=4,
同理可得,CG=BC=6,
∴FG=CG-CF=2.
解法一:过点A作AH∥BG,交CD的延长线于H点(9分)
则四边形ABGH是平行四边形,且AH⊥AF
∴AH=BG=4,GH=AB=10,∴FH=FG+GH=12(10分)
在Rt△FAH中,
AF==8;

解法二:过点C作CM∥AF,分别交AB、BG于点M、N(9分)
则四边形AMCF是平行四边形,CM=AF,且CM⊥BG于点N,
在等腰△BCM中,CN=NM,即CM=2CN
在等腰△CBG中,BN=NG=
BG=2,
在Rt△BNC中,
CN==4,
∴AF=CM=2CN=8
;

解法三:平行四边形ABCD中,AB∥CD,题知AF⊥BG,
∴Rt△ABE∽Rt△FGE,得
=,
而GE=BG-BE,
∴
=
,
解得BE=
,
∴GE=4-
=
(10分)
在Rt△AEB中,AE=
=,
在Rt△FEG中,EF=
=,
∴AF=AE+EF=8
.

(1)证明:如图①,在平行四边形ABCD中,∠BAD+∠ABC=180°
∵AF、BG分别平分∠BAD和∠ABC,
∴∠1=∠2,∠3=∠4,
∴∠1+∠3=
(∠BAD+∠ABC)=
×180°=90°,
∴在△AEB中,∠AEB=90°,知AF⊥BG.
又有平行四边形ABCD中,AB∥CD,即AB∥FG,
可得∠1=∠F,而∠1=∠2,
∴∠2=∠F,
∴在△DAF中,DF=AD(4分)
同理可得,在△CBG中,CG=BC,
∵平行四边形ABCD中,AD=BC,
∴DF=CG;
(2)解:如图②,平行四边形ABCD中,CD=AB=10,BC=AD=6,
由(1)和题意知,DF=AD=6,CF=CD-DF=4,
同理可得,CG=BC=6,
∴FG=CG-CF=2.
解法一:过点A作AH∥BG,交CD的延长线于H点(9分)
则四边形ABGH是平行四边形,且AH⊥AF
∴AH=BG=4,GH=AB=10,∴FH=FG+GH=12(10分)
在Rt△FAH中,
AF==8;

解法二:过点C作CM∥AF,分别交AB、BG于点M、N(9分)
则四边形AMCF是平行四边形,CM=AF,且CM⊥BG于点N,
在等腰△BCM中,CN=NM,即CM=2CN
在等腰△CBG中,BN=NG=
BG=2,
在Rt△BNC中,
CN==4,
∴AF=CM=2CN=8
;

解法三:平行四边形ABCD中,AB∥CD,题知AF⊥BG,
∴Rt△ABE∽Rt△FGE,得
=,
而GE=BG-BE,
∴
=
,
解得BE=
,
∴GE=4-
=
(10分)
在Rt△AEB中,AE=
=,
在Rt△FEG中,EF=
=,
∴AF=AE+EF=8
.