试题
题目:
(2006·广安)已知:如图,AB是⊙O的直径,⊙O过AC的中点D,DE切⊙O于点D,交BC于点E.
(1)求证:DE⊥BC;
(2)如果CD=4,CE=3,求⊙O的半径.
答案
(1)证明:连接OD,(1分)
∵DE切⊙O于点D,
∴DE⊥OD,
∴∠ODE=90°,(2分)
又∵AD=DC,AO=OB,
∴OD∥BC,(3分)
∴∠DEC=∠ODE=90°,
∴DE⊥BC;(4分)
(2)解:连接BD,(5分)
∵AB是⊙O的直径,
∴∠ADB=90°,(6分)
∴BD⊥AC,
∴∠BDC=90°,
又∵DE⊥BC,
Rt△CDB∽Rt△CED,(7分)
∴
BC
DC
=
DC
CE
,
∴BC=
D
C
2
CE
=
4
2
3
=
16
3
,(9分)
又∵OD=
1
2
BC,
∴OD=
1
2
×
16
3
=
8
3
,
即⊙O的半径为
8
3
.(10分)
(1)证明:连接OD,(1分)
∵DE切⊙O于点D,
∴DE⊥OD,
∴∠ODE=90°,(2分)
又∵AD=DC,AO=OB,
∴OD∥BC,(3分)
∴∠DEC=∠ODE=90°,
∴DE⊥BC;(4分)
(2)解:连接BD,(5分)
∵AB是⊙O的直径,
∴∠ADB=90°,(6分)
∴BD⊥AC,
∴∠BDC=90°,
又∵DE⊥BC,
Rt△CDB∽Rt△CED,(7分)
∴
BC
DC
=
DC
CE
,
∴BC=
D
C
2
CE
=
4
2
3
=
16
3
,(9分)
又∵OD=
1
2
BC,
∴OD=
1
2
×
16
3
=
8
3
,
即⊙O的半径为
8
3
.(10分)
考点梳理
考点
分析
点评
专题
切线的性质;圆周角定理;相似三角形的判定与性质.
本题由已知DE是⊙O的切线,可联想到常作的一条辅助线,即“见切点,连半径,得垂直”,然后再把要证的垂直与已有的垂直进行联系,即可得出证法.
命题立意:此题主要考查圆的切线的性质、垂直的判定、圆周角的性质、三角形相似等知识.
几何综合题;压轴题.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )