数学
(2011·老河口市模拟)如图,在等腰梯形ABCD中,AD∥BC.以CD为直径作⊙O,交BC边于点E,连接OE,过E作EH⊥AB,垂足为H.已知⊙O与AB边相切,切点为F.
(1)求证:OE∥AB;
(2)探究线段 EH与AB的数量关系,并证明你的结论;
(3)若BH=1,EC=
3
,求⊙O的半径.
(2011·老河口市模拟)如图,矩形ABCD中,点E为AD上一点,∠BEC=90°,AB=2,DE=1,求BC的长.
(2011·静安区二模)如图,在半径为5的⊙O中,点A、B在⊙O上,∠AOB=90°,点C是弧AB上的一个动点,AC与O
B的延长线相交于点D,设AC=x,BD=y.
(1)求y关于x的函数解析式,并写出它的定义域;
(2)如果⊙O
1
与⊙O相交于点A、C,且⊙O
1
与⊙O的圆心距为2,当BD=
1
3
OB时,求⊙O
1
的半径;
(3)是否存在点C,使得△DCB∽△DOC?如果存在,请证明;如果不存在,请简要说明理由.
(2011·晋江市质检)如图,菱形ABCD的边长为20cm,∠ABC=120°、动点P、Q同时从点A出发,其中点P以4cm/s的速度,沿A→B→C的路线向点C运动;点Q以
2
3
cm/s
的速度,沿A→C的路线向点C运动.
当P、Q到达终点C时,整个运动随之结束,设运动时间为t秒.
(1)直接填空:AP=
4t
4t
cm,AQ=
2
3
t
2
3
t
cm(用含t的代数式表示,其中0<t<5);
(2)若点Q关于菱形ABCD的对角线交点O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N.
①当t为何值时,PM+MN的值最小?
②当t为何值时,△PQM的面积S有最大值,此时最大值是多少?
(2011·金山区一模)已知:如图,点E、F、G分别在AB、AC、AD上,且EG∥BD.FG∥CD.
AE
BE
=
2
3
.四边形BCFE的面积比三角形AEF的面积大17.
(1)求证:EF∥BC;
(2)求△ABC的面积.
(2011·金山区二模)如图,正方形ABCD的边长是4,M是AD的中点.动点E在线段AB上运动.连接EM并延长交射线
CD于点F,过M作EF的垂线交射线BC于点G,连接EG、FG.
(1)求证:△GEF是等腰三角形;
(2)设AE=x时,△EGF的面积为y.求y关于x的函数关系式,并写出自变量x的取值范围;
(3)在点E运动过程中△GEF是否可以成为等边三角形?请说明理由.
(2011·江西模拟)矩形ABCD中,已知:AD=6,DC=8,矩形EFGH的三个顶点E、G、H分别在矩形ABCD
的边AB、CD、DA上,AH=2,连接CF,设AE=x,△FCG的面积=y.
(1)如图1,当四边形EFGH为正方形时,求x和y的值;
(2)如图2,①求y与x之间的函数关系式与自变量的取值范围;
②连接AC,当EF∥AC时,求x和y的值;
③当△CFG是直角三角形时,求x和y的值.
(2011·江西模拟)在Rt△ABC中,∠ACB=90°,AB=4,D为AB的中点,将一直角△DEF纸片平放在△ACB所在的平面上,且使直角顶点重合于点D(C始终在△DEF内部),设纸片的两直角边分别与AC、BC相交于M、N.
(1)当∠A=∠NDB=45°时,四边形MDNC的面积为
2
2
;
(2)当∠A=45°,∠NDB≠45°时,四边形MDNC的面积是否与(1)相同?说明理由;
(3)当∠A=∠NDB=30°时,四边形MDNC的面积为
3
3
;
(4)当∠A=30°,∠NDB≠30°时,四边形MDNC的面积是否发生变化?若不发生变化(即与(3)相同),说明理由,若发生变化,设四边形MDNC的面积为S,BN为x,求S与x之间的关系.
(2010·岳阳)已知AB是⊙O的直径,C是⊙O上一点,连接AC,过点C作CD⊥AB于点D.
(1)当点E为DB上任意一点(点D、B除外)时,连接CE并延长交⊙O于点F,AF与CD的延长线交于点G(如图①).
求证:AC
2
=AG·AF.
(2)李明证明(1)的结论后,又作了以下探究:当点E为AD上任意一点(点A、D除外)时,连接CE并延长交⊙O于点F,连接AF并延长与CD的延长线在圆外交于点G,CG与⊙O相交于点H(如图②).连接FH后,他惊奇地发现∠GFH=∠AFC.根据这一条件,可证GF·GA=GH·GC.请你帮李明给出证明.
(3)当点E为AB的延长线上或反向延长线上任意一点(点A、B除外)时,如图③、④所示,还有许多结论成立.请你根据图③或图④再写出两个类似问题(1)、(2)的结论(两角、两弧、
两线段相等或不相等的关系除外)(不要求证明).
(2010·扬州)在△ABC中,∠C=90°,AC=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直
线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.
(1)求线段AD的长;
(2)若EF⊥AB,当点E在线段AB上移动时,
①求y与x的函数关系式(写出自变量x的取值范围)
②当x取何值时,y有最大值?并求其最大值;
(3)若F在直角边AC上(点F与A、C两点均不重合),点E在斜边AB上移动,试问:是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.
第一页
上一页
245
246
247
248
249
下一页
最后一页
173190
173191
173192
173193
173194
173195
173196
173197
173198
173199