数学
正方形ABCD的BC边上有一点K,BF⊥AK于F,DE⊥AK于E.求BF、EF、ED三条线段之间有什么数量关系,并证明你的结论.
已知:如图,正方形ABCD的边长为1,动点E、F分别在边AB、对角线BD上(点E与点A、B都不重合)且AE=
2
DF
(1)设DF=x,CF
2
=y,求:y与x的函数关系式,并写出定义域;
(2)求证:FC=FE;
(3)是否存在以线段AE、DF、CF的长为边的直角三角形?若存在,请求出x的值;若不存在,请说明理由.
如图,在正方形ABCD中,O为对角线AC和BD的交点,E为CO上一点,连接BE,F为∠OBE角平分线上一点,连接OF、AF,G为BE上一点且BO=BG.
(1)若GF⊥OF,OF=1,求线段OG的长度;
(2)若∠AFB=90°,求证:AF=BF+OG.
如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:
(1)如果AB=AC,∠BAC=90度.
①当点D在线段BC上时(与点B不重合),如图甲,线段CF、BD之间的位置关系为
垂直
垂直
,数量关系为
相等
相等
.
②当点D在线段BC的延长线上时,如图乙,①中的结论是否仍然成立为什么(要求写出证明过程)
(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.且∠BCA=45°时,
①请你判断线段CF、BD之间的位置关系,并说明理由(要求写出证明过程).
②若AC=4
2
,CF=3.求正方形ADEF的边长(要求写出计算过程).
如图所示,点E,F在正方形ABCD的边BC,CD上,AE,BF相交于点G,BE=CF,求证:(1)AE=BF;(2)AE⊥BF.
(1)如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°.求证:BE=CF.
(2)如图2,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4.求GH的长.
如图1,点M、N分别是正方形ABCD的边AB、AD的中点,连接CN、DM.
(1)判断CN、DM的数量关系与位置关系,并说明理由;
(2)如图2,设CN、DM的交点为H,连接BH,求证:△BCH是等腰三角形.
如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2008次,点P依次落在点P
1
,P
2
,P
3
,…,P
2008
的位置,则P
2008
的横坐标X
2008
=
2007
2007
.
(1)如图1,△ABC是等边三角形,D是BC边上一点,CF平分∠ACG,E是CF上一点,若∠ADE=60°求证:DA=DE
(2)如图2,四边形ABCD是正方形,M为AB上的一点,BF平分∠CBG,E是BF上一点,若DM⊥ME,与(1)中类似的结论是什么?(不必证明)
(3)在(2)若将DM⊥ME换为MD=ME,能不能证明DM⊥ME?说明理由.
如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去…,记正方形ABCD的边长为a
1
=1,按上述方法所作的正方形的边长依次为a
2
,a
3
,a
4
,…,a
n
,则a
101
=
2
50
2
50
.
第一页
上一页
206
207
208
209
210
下一页
最后一页
118701
118703
118706
118708
118710
118712
118714
118716
118718
118720